
A GUIDE FOR
PRACTITIONERS IN CIVIC TECH /
TECH FOR DEVELOPMENT

Luke Jordan
Grassroot | MIT GOV/LAB

Don’t
build it.

● Studied Math & CS, then worked at McKinsey and the World Bank, then
picked up code again

● Founded Grassroot, a civic tech organization in South Africa

● Reached 2.5m users, over 40k activities called, used in national
Presidential debates and major Covid campaigns

● Grassroot built with our users, from community organizers to major
national campaigns

● Then founded Jupiter, a fintech for mass market saving (shut down by
regulators - code now open source)

● Now a Practitioner-in-Residence at MIT GOV/LAB, allowing me to distill
lessons learned over last 5 years

Quick Background

2

● Are people already trying to do what the
technology is supposed to help them do?

● If yes, how are they doing it now, and are you
sure you know why that does not work? And
why will technology make any difference to the
reason their existing attempts are frustrated?

● If not, why would having technology make a
difference? Why would someone who did not
want to do X now want to do X just because
some tech exists to do it?

Why not build it?

3

● An app to help people
participate in public planning
meetings

Some examples

4

Kinds of projects Questions to be asked first...

● If people thought participating would make a
difference, or would be well managed, would a
higher proportion not make a plan to attend?

● An app to help people report
local medical stock-outs or
service failures

● A data dashboard to help
officials gather real-time data on
education outcomes

● If a hospital system has such low
accountability it won’t install now-free
inventory management software, why would it
care what the app says?

● If the data was going to be used, wouldn’t
someone have created an Excel version
already?

But sometimes all the questions are ticked, and it is time to build -- just remember that
these days, no one will tell you it’s a bad idea, so make sure you’ve asked the questions

Grassroot’s origin

5

1

2

It’s too costly and difficult for the
poor to organize themselves

It’s too hard for local leaders to
access information they can act on
and connect to each other in a
meaningful way

Formal democratic
systems are
unaccountable
because barriers to
the poor in South
Africa organizing
themselves and
participating are too
high

Grassroot’s story

6

6 months talking to community
organizers before writing any
code, to be sure of (a) problem

80%+ organic growth, community
meetings doubled in size after
adoption of platform, use in
national elections, campaigns

Strategic review leads to switch to
WhatsApp courses, at smaller scale
+ handover to Amandla.mobi

A lot of scars
behind the graph...
Hence the guide

If you have to build it...

7

Outsourcing is great as a tactic, but a terrible
strategy.

Add full-time talent cautiously, at cost levels
where you can keep them in the team and
invest in their growing skills over time.

Get close to your users and to do so fast with
a dedicated community engagement team.

Adaptability and speed of learning are core
criteria in every role.

Set a budget that gets you off to a quick start,
but allows you to keep iterating over time.

Why not just outsource?

8

Makes the entire project’s success dependent on the single decision point of what
contractor you hire

Without the ability to judge technical merits or break down a project into its
components, you are almost guaranteed to under- or over-specify

A whole cottage industry of consultants hunts for bid docs written by non-technical
teams, and they’re not exactly who you want bidding, or building

Is the friendly developer who helped with the specs really going to hustle their
network for good bidders, and then also evaluate all the bids, and then also review
milestones and requests for scope changes?

If the project is not important enough to justify hiring a CTO (who can do lots of other
things beside the project), should you be building it?

Is there an example of a project or a major feature build that
you successfully killed?

What’s the best team member you’ve ever had, and how
would you find more of them?

What’s the worst team member you’ve had, and how would
you avoid them?

Have you ever managed to mentor someone from being on
the “worst” track to being on the “best” track? Have you
come close? What did you do?

How do you decide whether a technology belongs in the
stack for a project?

How do you react when a project is (very) late? Or when no
one is using it?

Hiring a CTO

9

Hiring a junior engineer

10

Hunger to learn. Speed of learning >> languages someone
has learned. Ask about side projects, or about a team decision
made on a prior project, and why it was made

Commitment to quality. Coding is about trade-offs, so
selecting between the necessary shortcut and the damaging
shortcut makes a big difference, and requires internal
discipline. Ask about managing trade-offs, e.g., what-ifs about
imagined (but concrete and plausible) scenarios.

Basic technical ability. Even with experience, it is sometimes
remarkable how many interviewees will not be able to code.
So, some simple coding and technical questions are handy.

Tech-field connections

11

Timelines, good and bad

12

● Set a budget that
gets you off to a
quick start, but
allows you to keep
iterating over time

● When it’s going
wrong--turn the
corner, then add
gas, otherwise you
just hit the wall
faster

Grassroot today

13

Unemployment

Theory, “democracy will work if people collectively
engage” and “people will engage if they can organize
more effectively” both failed--organizing spiked, hit
a wall of non-accountability, and fissured

WhatsApp courses maintained participation and
showed early signs of effectiveness, but funders
unenthused (wanted more … fad + polish)

Core platform used by Amandla.mobi to run national
campaigns--secured grants to low-income mothers
by 500k+ credible signatures in a week during Covid
lockdown--now primary channel of impact

If another problem that justifies building occurs, will
build again--else, will not (currently exploring)

Institutions

Knowledge

Structural
factors in
South Africa

in the guide

14

Plus:

● Vanity metrics versus learning
● Technology choices
● Rules of thumb on budgets

… and much more

Get it here:
https://mitgovlab.org/resources/dont-build-it
-a-guide-for-practitioners-in-civic-tech/

All this and more...

https://mitgovlab.org/resources/dont-build-it-a-guide-for-practitioners-in-civic-tech/
https://mitgovlab.org/resources/dont-build-it-a-guide-for-practitioners-in-civic-tech/

